
Lesson 02 Thermodynamics-II 

 

Equilibrium shape of crystals: Wulf’s theorem 

 Unlike in the liquid materials we have been studying till now, the surface tension 

of crystalline solid materials depends on the 

atomic arrangement at the surface, which 

depends on the orientation, i.e., on the surface 

Miller indices (to be described later).  For that 

reason the equilibrium shape of a crystal as it 

solidifies from a liquid drop or condenses 

from its vapor, changes from spherical to 

polyhedral. Intuitively one expects surface 

orientations with low surface tension to be 

predominant.  This will undoubtedly include 

the most compact surfaces, i.e., those with low 

Miller indices, since there the number of broken bonds per atom is minimal. The first 

treatment of the problem was by Wulf in 1901. Here is his theorem: 

 Consider a crystal polyhedron (broken lines in the figure) delimited by surfaces of 

area Ai, in equilibrium with its vapor. These surfaces are at a distance hi from the center 

C. Large surfaces are closer to the center than smaller ones, as shown in the figure.  

 In equilibrium we must have:   = -psVs -pvVv + i i Ai = 0 

The conditions are:  -total volume constant  V = Vs +Vv 

   -same chemical potential  s = v 

   -uniform temperature  T = constant 

 

The crystal volume is:  Vs = i 
3

1 Aihi ,  so that Vs = 
3

1 i [hi Ai + Ai hi] 

From the figure we see also that:  Vs,i  =  Ai hi = 
3

1 (hi Ai + Ai hi) = 
2

1 (hi Ai).  

Substituting into , with Vs = -Vv, we get: 

i {
2

1 (-ps +pv)hi + i}Ai = 0 

hi 

Ai 

C 



This should be true for any value of Ai (they are independent variables). Therefore, 

i / hi = constant 

This is Wulff’s theorem. It implies that the areas of the facets exposed by the crystal can 

be obtained by tracing radii in the appropriate direction with a length proportional to i 

and a plane perpendicular to the radius vector. The minimal polyhedron delimited by the 

intersection of the innermost planes is the equilibrium shape. 

 Although the construction in the previous figure shows flat surfaces delimiting the 

crystal polyhedron, it is not obvious that the flat facet under a sharp cusp (a low Miller 

index plane) should be delimited by other 

flat facets, as indicated in the drawing. In 

fact the envelope of tangents can be 

curved. 

 

 The shape of (n) changes from spherical, when the crystal is liquid (molten), to 

one with cusps at the positions of the most stable surfaces, which are the low Miller index 

planes.  In these surfaces the atoms lose the least 

amount of bonds by the truncation of the crystal. For 

example, in an fcc or hcp crystal, the coordination 

goes from 12 in the bulk to 9 in the (111) surface, 

and to 8 in the (100) surfaces.  The formation of 

singularities or cusps is due to the discrete nature of 

matter, so that when the orientation changes steps 

are formed. The interaction between steps 

determines the nature of the cusp. If Es is the energy 

per unit step length, and if  is the angle away from 

the singular surface, the density of steps is 

1/a.sin(), where a is the step height. The extra 

surface energy per u. area () is then: 

 = Es.1/a.   (for small ’s).   

So that:      () = (0) + Es.1/a.   
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This represents a cone in a () plot. The cone needs not be symmetric because the value 

of Es might be different for different azimuthal angles.  Example: 

 

This discussion assumed equidistant steps, separated by terraces on n atoms.   One could 

imagine ‘pathological’ surfaces where terraces of different number of atoms, n, n’, 

alternate.  In this case the angle  could assume as many values as rational numbers ….  

Do such surfaces exist ?  In other words:  when cutting a crystal along a plane of a given 

orientation, what surface structure is produced?  Unless we can “see” the atoms, all we 

know is the macroscopic angle. 

The fact that experimentally stable stepped surfaces with periodically spaced steps exist 

implies that there is a repulsive interaction between steps, otherwise they will attract each 

other and collapse giving rise to faceting, discussed in next paragraph.  The interaction is 

due to: 

a) Dipole electrostatic repulsion 

b) Elastic repulsion,   all decaying as 1/d
3 

 

Kinetics 

The equilibrium crystal shape rarely occurs because of kinetics. 

Example: growth of nanoparticles with controlled shape by surfactant adsorption. 
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